Space group $P 2_{1} / c$ for (1) was determined by the unique systematic absences ($h 0 l$ absent if $l=2 n+1,0 k 0$ absent if $k=2 n+1$). The shape of the anisotropic displacement ellipsoids of the phosphite O atoms suggested the presence of disorder. A difference map showed maxima in positions consistent with an equal disordering of the phosphite atoms $\mathrm{O} 4,05$ and 06 , associated with a slight rotation of the ligand O atoms around the P - Co vector. A view of the phosphite ligand down the P - Co vector showing the positions of the six half O atoms has been deposited as supplementary material. The ${ }^{i} \mathrm{Pr}$ groups of the phosphite ligand are ordered. The unit cell was also found to contain two $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecules disordered around inversion centres. A disorder model was used to account for the electron density in these regions of the unit cell. An electron density map showing the positions of the atoms of the solvent molecule, C 13 (multiplicity 0.5), $\mathrm{Cl1}$ (0.667), Cl 2 (0.667) and $\mathrm{Cl} 3(0.667)$, has also been deposited as supplementary material.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CAD4 Software. Program(s) used to solve structure: SHELXTL/ PC (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/ $P C$. Software used to prepare material for publication: SHELXL93.

This research was supported by NSERC, Canada, and the University of Toronto.

> Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry, together with a view of the phosphite ligand down the P-Co vector and an electron density map showing the positions of the atoms of the solvent molecule, have been deposited with the IUCr (Reference: FG1073). Copies may be obtained through The Managing Editor, Intemational Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Abrahamson, H. B., Frazier, C. C., Ginley, D. S., Gray, H. B., Lilienthal, J., Tyler, D. R. \& Wrighton, M. S. (1977). Inorg. Chem. 16, 1554-1556.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
Einstein, F. W. B. \& Kirkland, R. (1978). Acta Cryst. B34, 16901692.

Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
Ibers, J. A. (1968). J. Organomet. Chem. 14, 423-428.
Jones, R. A., Seeberger, M. H., Stuart, A. L., Whittlesey, B. R. \& Wright, T. C. (1986). Acta Cryst. C42, 399-402.
Levenson, R. A. \& Gray, H. B. (1975). J. Am. Chem. Soc. 97, 60426047.

Levenson, R. A., Gray, H. B. \& Ceasar, G. P. (1970). J. Am. Chem. Soc. 92, 3653-3658.
Manning, A. R. (1968). J. Chem. Soc. A, pp. 1135-1137.
Sheldrick, G. M. (1990). SHELXTL/PC Users Manual. Release 4.21. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
Summer, G. G., Klug, H. P. \& Alexander, L. E. (1964). Acta Cryst. 17, 732-742.

Acta Cryst. (1995). C51, 2010-2013

$(\mathrm{CuX})_{n}$ Helical Chains in $\left[\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}-\right.$ $\left.\mathrm{Cu}_{2} \mathrm{X}_{2}\right](\mathrm{X}=\mathrm{Br}, \mathrm{Cl})$

Keni Tokoro, Masahiro Ebihara and Takashi Kawamura

Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-11, Japan

(Received 19 September 1994; accepted 7 February 1995)

Abstract

In poly[di- μ-bromo-bis ($\mu_{3}-N, N$-diethyldithiocarbamato)dicopper(I) platinum(II)], $\left[\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2} \mathrm{Cu}_{2} \mathrm{Br}_{2}\right]$, and poly[di- μ-chloro-bis ($\mu_{3}-N, N$-diethyldithiocarbamato)dicopper(I)platinum(II)], $\left[\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2} \mathrm{Cu}_{2} \mathrm{Cl}_{2}\right]$, a helical chain of $(\mathrm{CuX})_{n}(X=\mathrm{Br}, \mathrm{Cl})$ extends around a 4_{1} axis and each $\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}$ group links two of the helical chains with its four S atoms. Each Cu atom is surrounded by two S and two halogen atoms and has slightly distorted tetrahedral coordination geometry.

Comment

Dithiocarbamato complexes form various types of adducts with copper(I) halides because the bonding capacities of the S atoms are not otherwise fully saturated. $\mathrm{Co}\left(\mathrm{S}_{2} \mathrm{CN} R_{2}\right)_{3}$ has three possible interligand $\mathrm{S}-\mathrm{S}$ chelating sites and reacts with CuBr or CuI utilizing these three chelating sites to give heterobimetallic adducts of $1: 1,1: 2$ and $1: 3$ stoichiometries: e.g. $\left[\mathrm{Co}\left\{\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2}\right)_{4}\right\}_{3}(\mathrm{CuBr})\right]$ (Engelhardt, Healy, Papasergio \& White, 1985), $\left[\mathrm{Co}\left(\mathrm{S}_{2} \mathrm{CNPr}_{2}\right)_{3}(\mathrm{CuI})\right]$ (Engelhardt, Healy, Skelton \& White, 1988), [Co($\mathrm{S}_{2} \mathrm{CN}$ $\left.\left.\mathrm{Et}_{2}\right)_{3}(\mathrm{CuBr})_{2}\right] .2 \mathrm{CH}_{3} \mathrm{CN}$ and $\left[\mathrm{Co}\left\{\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2}\right)_{4}\right\}_{3}(\mathrm{CuI})_{3}\right]$ (Engelhardt, Healy, Shephard, Skelton \& White, 1988). These mixed-metal complexes have either discrete or one- or three-dimensional polymeric structures in the solid state. We report here the interesting structures of $\left[\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2} \mathrm{Cu}_{2} \mathrm{Br}_{2}\right]_{n}$, (1), and $\left[\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2} \mathrm{Cu}_{2} \mathrm{Cl}_{2}\right]_{n}$, (2), constructed from planar

(1) $X=\mathrm{Br}$
(2) $X=\mathrm{Cl}$

Acta Crystallographica Section C
ISSN 0108-2701 ©1995
dithiocarbamato platinum(II) units and $(\mathrm{CuX})_{n}$ helical chains.
Fig. 1 shows the coordination around a $\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}$ residue in (1). Each $\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}$ unit has a normal planar structure and links two $(\mathrm{CuBr})_{n}$ helical chains by using its four S atoms. Each Cu atom has a slightly distorted tetrahedral environment. Bond angles around the Cu atom are 98.1 (1)-118.5 (1) ${ }^{\circ}$. The lengths of the $\mathrm{Cu}-\mathrm{S}$ bonds are 2.342 (3) and 2.434 (3) \AA and those of the $\mathrm{Cu}-\mathrm{Br}$ bonds are 2.418 (2) and 2.467 (2) \AA. Polymeric structures of $\left[\mathrm{Cu}\left\{\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2}\right)_{s}\right\}_{2}(\mathrm{CuBr})_{n}\right](n=4$ or 6) comprising planar $\mathrm{Cu}\left\{\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2}\right)_{5}\right\}_{2}$ residues and polymeric chains of $(\mathrm{CuBr})_{n}$ have also been reported (Golding, Rae, Ralph \& Sulligoi, 1974). In these complexes the $\mathrm{Cu}-\mathrm{S}$ distances are 2.269 (1)-2.476 (3) \AA and the $\mathrm{Cu}-\mathrm{Br}$ distances are in a rather wide range of 2.357 (3)-2.863 (7) \AA.

Fig. 1. ORTEPII (Johnson, 1976) diagram of a $\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}$ residue in $\left[\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2} \mathrm{Cu}_{2} \mathrm{Br}_{2}\right]$, (1). Displacement ellipsoids are drawn at the 50% probability level. Only one of the two disordered C-atom sites, C6, is shown for clarity. Solid bonds represent the $(\mathrm{CuBr})_{n}$ helix.

The unit cell of (2) viewed along the b axis is shown in Fig. 2. Each Pt atom lies on an inversion centre. Each $(\mathrm{CuCl})_{n}$ helical chain extends around a 4_{1} axis. The coordination in (2) is similar to that in (1) and the complexes are isostructural. The $\mathrm{Cu}-\mathrm{S}$ distances [2.336 (3) and 2.426 (3) \AA] are longer and the $\mathrm{Cu}-\mathrm{Cl}$ distances [2.297 (3) and 2.349 (3) \AA] are shorter than those in similar complexes with tetrahedral $\mathrm{CuS}_{2} \mathrm{Cl}_{2}$ moieties, such as $\left[\mathrm{Cu}_{3}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)_{2} \mathrm{Cl}_{3}\right][\mathrm{Cu}-$ S 2.268 (1) and $2.281(1) \AA, \mathrm{Cu}-\mathrm{Cl} 2.388$ (1) and 2.394 (1) \AA (Hendrickson, Martin \& Taylor, 1975)]. In the $(\mathrm{CuX})_{n}$ helical chains of (1) and (2), the $\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}$ angle $\left[110.18(8)^{\circ}\right]$ is a little larger than the $\mathrm{Br}-\mathrm{Cu}-\mathrm{Br}$ angle $\left[106.70(6)^{\circ}\right]$. The difference between the $\mathrm{Cu}-\mathrm{Br}$
and $\mathrm{Cu}-\mathrm{Cl}$ distances is approximately $0.12 \AA$, which is comparable to the difference in the covalent radii of Cl and $\operatorname{Br}(0.15 \AA$; Cotton \& Wilkinson, 1988).

Fig. 2. Unit cell of $\left[\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2} \mathrm{Cu}_{2} \mathrm{Cl}_{2}\right]_{n}$, (2), viewed along the b axis. Displacement ellipsoids are drawn at the 50% probability level. The alkyl groups of the $\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}$ residues are omitted for clarity. Solid bonds represent the $(\mathrm{CuCl})_{n}$ helix. Hatched ellipsoids represent Cu atoms.

Experimental

Complex (1): To 12.5 ml of a dichloromethane solution of $\operatorname{Pt}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}(63 \mathrm{mg}, 0.13 \mathrm{mmol})$ and $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}$ ($82 \mathrm{mg}, 0.26 \mathrm{mmol}$), $\mathrm{Bu} u_{4} \mathrm{NBr}(84 \mathrm{mg}, 0.25 \mathrm{mmol}$) in 7.5 ml of dichloromethane was added. All the reactants dissolved; the resultant yellow solution was stirred for 1 h and then settled for 16 h to give yellow prismatic crystals suitable for X-ray study (72\%). Elemental analysis: calculated for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{Cu}_{2} \mathrm{~N}_{2} \mathrm{PtS}_{4} \mathrm{C}$ 15.43, H 2.59%; found $\mathrm{C} 15.19, \mathrm{H}$ 2.42\%.

Complex (2): The synthesis of complex (2) was carried out analogously to that described for (1) by using $\mathrm{Bu}_{4} \mathrm{NCl}$ instead of $\mathrm{Bu}_{4} \mathrm{NBr}$. A yellow powder precipitated after several minutes (64%), but it did not dissolve in any common organic solvent. The elemental analysis of the powder was consistent with $\left[\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2} \mathrm{Cu}_{2} \mathrm{Cl}_{2}\right]$: calculated for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{Cu}_{2} \mathrm{~N}_{2} \mathrm{PtS}_{4} \mathrm{C}$ 17.42, H 2.93, N 4.06%; found C $17.27, \mathrm{H} 2.95, \mathrm{~N} 4.06 \%$. The single crystal of (2) was obtained incidentally in the preparation of $\left[\mathrm{Pt}_{3}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)_{6} \mathrm{Cu}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ by reaction of $\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}$ and $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Ebihara et al., 1994). $\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}(200 \mathrm{mg}, 0.41 \mathrm{mmol})$ and $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}(89 \mathrm{mg}, 0.28 \mathrm{mmol})$ were dissolved in 15 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under Ar and stirred for 6 h at 293 K . After filtration of the orange-yellow reaction solution, n-hexane was layered onto the filtrate to give $\left[\mathrm{Pt}_{3}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)_{6} \mathrm{Cu}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ as a yellow powder. The powder was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}(1: 1 \mathrm{v} / \mathrm{v})$ mixed solvent and n-hexane was layered to give pale yellow prismatic crystals of (2) suitable for X-ray study. Attempts to reproduce this synthesis of (2) have been unsuccessful.

Compound (1)

Crystal data
$\left[\mathrm{Cu}_{2} \mathrm{PtBr}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right)_{2}\right]$
$M_{r}=778.51$
Tetragonal
I41/a
$a=15.967$ (1) \AA
$c=15.348(4) \AA$
$V=3912.9(8) \AA^{3}$
$Z=8$
$D_{x}=2.643 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection
AFC-7R diffractometer
$\omega / 2 \theta$ scans
Absorption correction: refined from ΔF
(DIFABS; Walker \&
Stuart, 1983)
$T_{\text {min }}=0.076, T_{\text {max }}=0.41$
2506 measured reflections
2344 independent reflections
1521 observed reflections
$[I>2 \sigma(I)]$

Refinement

Refinement on F
$R=0.045$
$w R=0.041$
$S=1.56$
1521 reflections
97 parameters
H atoms not located
$w=1 /\left[\sigma^{2}(F)+(0.08 F)^{2} / 4\right]$

S1-Ptl-S1 ${ }^{\text {i }}$	180	$\mathrm{Pt1}-\mathrm{S} 2-\mathrm{Cl}$	87.9 (4)
$\mathrm{S} 1-\mathrm{Pt} 1-\mathrm{S} 2$	75.4 (1)	$\mathrm{Cul}{ }^{2}-\mathrm{S} 2-\mathrm{Cl}$	103.3 (4)
$\mathrm{S} 2-\mathrm{Pt} 1-\mathrm{S} 2{ }^{\text {i }}$	180	$\mathrm{Cl}-\mathrm{N} 1-\mathrm{C} 2$	121 (1)
$\mathrm{CuI}-\mathrm{Brl}-\mathrm{CuI}^{\text {ii }}$	115.45 (5)	$\mathrm{Cl}-\mathrm{N} 1-\mathrm{C} 4$	118 (1)
$\mathrm{Brl}-\mathrm{Cul}-\mathrm{Br} 1^{\text {iv }}$	106.70 (6)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$	119 (1)
$\mathrm{Brl}-\mathrm{Cul}-\mathrm{Sl}$	112.8 (1)	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	108.5 (7)
$\mathrm{Br}-\mathrm{Cul}-\mathrm{S}^{\text {iii }}$	112.7 (1)	$\mathrm{S} 1-\mathrm{Cl}-\mathrm{N} 1$	127.4 (9)
$\mathrm{Br}^{\text {iv- }}$ - $\mathrm{Cul}-\mathrm{Sl}$	118.5 (1)	$\mathrm{S} 2-\mathrm{C} 1-\mathrm{N} 1$	124.0 (9)
$\mathrm{Brl}^{\text {iv }}-\mathrm{Cul}-\mathrm{S}^{\text {iii }}$	98.12 (10)	N1-C2-C3	108 (1)
S1-Cul-S2 ${ }^{\text {iii }}$	107.2 (1)	N1-C4-C5	112 (1)
$\mathrm{Pt} 1-\mathrm{Sl}-\mathrm{Cul}$	112.5 (1)	N1-C4-C6	108 (2)
$\mathrm{Pt}-\mathrm{Sl}-\mathrm{Cl}$	87.9 (4)	C5-C4-C6	49 (2)
$\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{Cl}$	111.8 (4)	C4-C5-C6	57 (2)
$\mathrm{Pt1}-\mathrm{S} 2-\mathrm{Cul}{ }^{*}$	106.5 (1)	C4-C6-C5	73 (2)

Symmetry codes: (i) $-x,-y,-z$; (ii) $\frac{1}{4}+y, \frac{1}{4}-x, \frac{1}{4}+z$; (iii) $\frac{1}{4}-y, \frac{1}{4}+$ $x, \frac{1}{4}-z ;$ (iv) $\frac{1}{4}-y, x-\frac{1}{4}, z-\frac{1}{4} ;\left(\right.$ (v) $y-\frac{1}{4}, \frac{1}{4}-x, \frac{1}{4}-z$.

Compound (2)

Crystal data
$\left[\mathrm{Cu}_{2} \mathrm{PtCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right)_{2}\right.$]
$M_{r}=689.62$
Tetragonal
I4 ${ }_{1} / a$
$a=15.835$ (2) \AA
$c=15.037(3) \AA$
$V=3770.5(9) \AA^{3}$
$Z=8$
$D_{x}=2.429 \mathrm{Mg} \mathrm{m}^{-3}$
$(\Delta / \sigma)_{\max }<0.0001$
$\Delta \rho_{\max }=0.97 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-1.29 \mathrm{e} \AA^{-3}$
Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Data collection

AFC-7R diffractometer $\omega / 2 \theta$ scans
Absorption correction:
refined from ΔF
(DIFABS; Walker \&
Stuart, 1983)
$T_{\text {min }}=0.124, \quad T_{\text {max }}=0.27$

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (1)

	x	y	z	$U_{\text {eq }} / U_{\text {iso }}$
Pt1	0	0	0	0.0330 (2)
Brl	0.23285 (7)	-0.03110 (7)	0.2502 (1)	0.0462 (4)
Cu 1	0.20619 (9)	0.05168 (9)	0.1212 (1)	0.0486 (5)
S1	0.0642 (2)	0.0840 (2)	0.1031 (2)	0.0387 (8)
S2	-0.0665 (2)	-0.0327 (2)	0.1289 (2)	0.0376 (8)
N1	0.0054 (6)	0.0463 (7)	0.2666 (8)	0.050 (3)
C1	0.0023 (6)	0.0358 (7)	0.1813 (8)	0.034 (3)
C2	-0.0451 (8)	-0.006 (1)	0.3268 (9)	0.060 (5)
C3	0.0099 (9)	-0.080 (1)	0.359 (1)	0.086 (6)
C4	0.0669 (8)	0.1088 (9)	0.3031 (9)	0.056 (4)
C5 \dagger	0.042 (1)	0.141 (1)	0.393 (2)	0.072 (9)
C6 \dagger	0.025 (3)	0.178 (3)	0.326 (4)	0.07 (1)

\dagger Disordered site (see below).
Table 2. Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$ for (1)

$\mathrm{Pt1}-\mathrm{Sl}$	2.313 (3)	S2-C1	1.74 (1)
$\mathrm{Pt}-\mathrm{Sl}^{1}$	2.313 (3)	$\mathrm{Nl}-\mathrm{Cl}$	1.32 (2)
$\mathrm{P} 11-\mathrm{S} 2$	2.305 (3)	N1-C2	1.48 (2)
$\mathrm{Pt} 1-\mathrm{S}^{2}{ }^{\text {i }}$	2.305 (3)	N1-C4	1.51 (1)
$\mathrm{Brl}-\mathrm{Cul}$	2.418 (2)	C2-C3	1.56 (2)
$\mathrm{Br}-\mathrm{Cul}{ }^{\text {ii }}$	2.467 (2)	C4-C5	1.52 (3)
$\mathrm{Cu}-\mathrm{S} 1$	2.342 (3)	C4-C6	1.34 (4)
Cul-S2 ${ }^{\text {iii }}$	2.434 (3)	C5-C6	1.21 (5)
$\mathrm{S} 1-\mathrm{Cl}$	1.73 (1)		

2413 measured reflections
2255 independent reflections 1650 observed reflections $[I>2 \sigma(I)]$

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=12.63-14.88^{\circ}$
$\mu=9.084 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prismatic
$0.33 \times 0.15 \times 0.12 \mathrm{~mm}$ Yellow
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 20$
$k=0 \rightarrow 20$
$l=0 \rightarrow 19$
3 standard reflections
monitored every 150 reflections
intensity decay: 2.29\%

Extinction correction: Zachariasen (1968) type 2 Gaussian isotropic
Extinction coefficient: $1.11(6) \times 10^{-7}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Refinement

Refinement on F
$R=0.038$
$w R=0.037$
$S=1.73$
1650 reflections
98 parameters
H atoms not located
$w=1 /\left[\sigma^{2}(F)+(0.09 F)^{2} / 4\right]$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=1.15 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.07 \mathrm{e} \AA^{-3}$
Table 3. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (2)
$U_{\text {iso }}$ for C 5 and $\mathrm{C} 6 ; U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$ for others.

	x	y	z	$U_{\text {eq }} / U_{\text {iso }}$
	x	0	0	$0.0247(1)$
Ptl	0	$0.04217(8)$	$0.12879(9)$	$0.0398(4)$
Cul	$0.19980(8)$	$0.0134(2)$	$0.0013(2)$	$0.0389(7)$
$\mathrm{Cl1}$	$0.2744(1)$	$0.0841(1)$	$0.1055(2)$	$0.0296(6)$

S2	$0.0669(1)$	$-0.0341(1)$	$0.1316(2)$	$0.0290(6)$
N1	$-0.0069(5)$	$0.0452(5)$	$0.2719(5)$	$0.039(2)$
C1	$-0.0030(6)$	$0.0336(5)$	$0.1846(6)$	$0.028(2)$
C2	$0.0443(7)$	$-0.0070(8)$	$0.3324(7)$	$0.053(4)$
C3	$-0.0117(10)$	$-0.0844(9)$	$0.364(1)$	$0.089(5)$
C4	$-0.0692(6)$	$0.1062(8)$	$0.3105(7)$	$0.048(3)$
C5 \dagger	$-0.050(1)$	$0.137(1)$	$0.404(1)$	$0.065(7)$
C6 \dagger	$-0.022(2)$	$0.182(2)$	$0.338(2)$	$0.07(1)$

Table 4. Selected geometric parameters (\AA, ${ }^{\circ}$) for (2)

$\mathrm{Pt} 1-\mathrm{S} 1$	2.314 (2)	$\mathrm{Cu} 1-\mathrm{Clı}$	2.297 (3)
Ptl-SI ${ }^{\text {i }}$	2.314 (2)	$\mathrm{Cul}-\mathrm{Cli}^{\text {ii }}$	2.349 (3)
$\mathrm{Pt} 1-\mathrm{S} 2$	2.309 (2)	Cul-S ${ }^{\text {iii }}$	2.336 (3)
$\mathrm{Pt1}-\mathrm{S} 2^{\mathbf{i}}$	2.309 (2)	Cul-S2	2.426 (3)
Sl-Ptl-S ${ }^{\text {i }}$	180	S1 ${ }^{\text {iii }}$ - $\mathrm{Cu} 1-\mathrm{S} 2$	106.30 (9)
$\mathrm{S} 1-\mathrm{Pt1-S} 2$	75.60 (8)	$\mathrm{Cul}-\mathrm{Cll}-\mathrm{Cul}^{\text {iv }}$	120.6 (1)
S2-Ptl-S2 ${ }^{\text {i }}$	180	$\mathrm{Pt1}-\mathrm{Sl}-\mathrm{Cul}^{\text {V }}$	111.6 (1)
$\mathrm{Cl} 1-\mathrm{Cul}-\mathrm{Cli}^{\text {ii }}$	110.18 (8)	$\mathrm{Pt1}-\mathrm{Sl}-\mathrm{Cl}$	87.3 (3)
$\mathrm{Cl} 1-\mathrm{Cul}-\mathrm{Sl}^{\text {iii }}$	113.2 (1)	$\mathrm{Cul}{ }^{\text {v }}-\mathrm{Sl}-\mathrm{Cl}$	111.9 (3)
$\mathrm{Cl1}-\mathrm{Cul}-\mathrm{S} 2$	111.19 (9)	Pt1-S2-Cul	105.5 (1)
$\mathrm{Cl1ii}-\mathrm{Cul}-\mathrm{Si}^{\text {iii }}$	117.0 (1)	$\mathrm{Pr} 1-\mathrm{S} 2-\mathrm{Cl}$	87.5 (3)
$\mathrm{Cl1}{ }^{1 i}-\mathrm{Cul}-\mathrm{S} 2$	97.75 (9)	$\mathrm{Cu} 1-\mathrm{S} 2-\mathrm{Cl}$	104.7 (3)

Symmetry codes: (i) $-x,-y,-z$; (ii) $\frac{1}{4}+y, \frac{1}{4}-x, \frac{1}{4}+z$; (iii) $\frac{1}{4}-y, \frac{1}{4}+$ $x, \frac{1}{4}-z$; (iv) $\frac{1}{4}-y, x-\frac{1}{4}, z-\frac{1}{4}$; (v) $y-\frac{1}{4}, \frac{1}{4}-x, \frac{1}{4}-z$.
One of the two crystallographically independent methyl C atoms was disordered in two sites (C5 and C6). The occupancy of the C5 site was refined as $0.66(7)$ and the sum of occupancies of the C5 and C6 sites was made equal to 1.00 . Atoms C5 and C6 were refined with isotropic displacement parameters. H atoms were not included in the refinement.
For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Sofiware; data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1993); program(s) used to solve structures: SAPI91 (Fan, 1991); program(s) used to refine structures: TEXSAN $L S$; software used to prepare material for publication: TEXSAN FINISH.

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

Lists of structure factors and anisotropic displacement parameters have been deposited with the IUCr (Reference: MUl152). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Cotton, F. A. \& Wilkinson, G. (1988). In Advanced Inorganic Chemistry, 5th edition. New York: Wiley Interscience.
Ebihara, M., Tokoro, K., Maeda, M., Ogami, M., Imaeda, K., Sakurai, K., Masuda, H. \& Kawamura, T. (1994). J. Chem. Soc. Dalton Trans. pp. 3621-3635.
Engelhardt, L. M., Healy, P. C., Papasergio, R. I. \& White, A. H. (1985). Inorg. Chem. 24, 382-385.

Engelhardt, L. M., Healy, P. C., Shephard, R. M., Skelton, B. W. \& White, A. H. (1988). Inorg. Chem. 27, 2371-2373.
Engelhardt, L. M., Healy, P. C., Skelton, B. W. \& White, A. H. (1988). Aust. J. Chem. 41, 839-844.
Fan, H.-F. (1991). SAPI91. Structure Analysis Programs with Intelligent Control. Rigaku Corporation, Tokyo, Japan.

Golding, R. M., Rae, A. D., Ralph, B. J. \& Sulligoi, L. (1974). Inorg. Chem. 13, 2499-2504.
Hendrickson, A. R., Martin, R. L. \& Taylor, D. (1975). J. Chem. Soc. Chem. Commun. pp. 843-844.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1993). TEXSAN Single Crystal Structure Analysis Software. Version 1.6c. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1995). C51, 2013-2015

Tetrabutylammonium Di- μ-iodobis(iodoargentate) Hexatungstate, $\left[{ }^{[} \mathrm{Bu}_{4} \mathrm{~N}_{4}\left[\mathrm{Ag}_{2} \mathrm{I}_{4}\right]\left[\mathbf{W}_{6} \mathrm{O}_{\mathbf{1 9}}\right]\right.$

Hong-wei Hou, Xiangrong Ye and Xinquan Xin*

State Key Laboratory of Coordination Chemistry, Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Zhemin Wang, Shixiong Liu and Jinling Huang

Department of Chemistry, Fuzhou University, Fuzhou 350002, People's Republic of China
(Received 28 June 1994; accepted 10 April 1995)

Abstract

The title compound, $4 \mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}^{+} . \mathrm{Ag}_{2} \mathrm{~L}_{4}^{2-} . \mathrm{W}_{6} \mathrm{O}_{19}{ }^{2-}$, prepared from $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{WO}_{2} \mathrm{~S}_{2},{ }^{n} \mathrm{Bu}{ }_{4} \mathrm{NBr}$ and AgI , is a new type of complex. The compound contains the hexatungstate cage anion $\left[\mathrm{W}_{6} \mathrm{O}_{19}\right.$] and the planar disilver anion $\left[\mathrm{Ag}_{2} \mathrm{I}_{4}\right]$, the charge of these two species being balanced by four tetrabutylammonium cations, ${ }^{n} \mathrm{Bu}_{4} \mathrm{~N}$.

Comment

Polyoxometallates are unique in their topological and electronic versatility and are important in analytical and clinical chemistry (Semenovskaya, 1986), catalysis (Neumann \& Lissel, 1989), biochemistry, medicine and solid-state devices (Triki, Ouahab, Padiou \& Grandjean, 1989). The coordination compounds of Ag also have many important properties, e.g. the superionic conductivity of $M_{2} \mathrm{AgI}_{3}, M \mathrm{Ag}_{4} \mathrm{I}_{5}\left(M=\mathrm{NH}^{+}, \mathrm{K}^{+}, \mathrm{Na}^{+}\right)$ and $\mathrm{C}_{8} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{Ag}_{2} \mathrm{I}_{4}$ (Thackeray \& Coetzer, 1975). Thus, these compounds have attracted much interest (Pope \&

